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Abstract

Background: Until recently the isolation of microsatellite markers from Lepidoptera has proved troublesome, expensive and
time-consuming. Following on from a previous study of Edith’s checkerspot butterfly, Euphydryas editha, we developed
novel microsatellite markers for the vulnerable marsh fritillary butterfly, E. aurinia. Our goal was to optimize the process in
order to reduce both time and cost relative to prevailing techniques. This was accomplished by using a combination of
previously developed techniques: in silico mining of a de novo assembled transcriptome sequence, and genotyping the
microsatellites found there using an economic method of fluorescently labelling primers.

Principal Findings: In total, we screened nine polymorphic microsatellite markers, two of which were previously published,
and seven that were isolated de novo. These markers were able to amplify across geographically isolated populations
throughout Continental Europe and the UK. Significant deviations from Hardy-Weinberg equilibrium were evident in some
populations, most likely due to the presence of null alleles. However, we used an Fst outlier approach to show that these
markers are likely selectively neutral. Furthermore, using a set of 128 individuals from 11 populations, we demonstrate
consistency in population differentiation estimates with previously developed amplified fragment length polymorphism
(AFLP) markers (r = 0.68, p,0.001).

Significance: Rapid development of microsatellite markers for difficult taxa such as Lepidoptera, and concordant results
with other putatively neutral molecular markers, demonstrate the potential of de novo transcriptional sequencing for future
studies of population structure and gene flow that are desperately needed for declining species across fragmented
landscapes.
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Introduction

Microsatellite markers are an important tool in population

genetics and conservation biology. They typically have high levels

of polymorphism and generate reliable data on genetic diversity,

population structure and gene flow in highly protected species

[1,2]. At the same time, microsatellites can be amplified from trace

amounts of DNA, and permit non-lethal and non-invasive

sampling. Although many new genotyping techniques have

become available, microsatellites will likely remain relevant for

the foreseeable future, given their low input DNA requirements

and power for producing reliable genotypes suitable for calculation

of familial relationships and for population genetic studies. For

many species the usual route to isolating and characterizing

microsatellite markers involves a time-consuming process of

enriching a genomic DNA library for a variety of di-, tri- or

tetra-nucleotide repeat motifs, followed by a process of cloning and

sequencing, to finally design species-specific primers [3–5]. The

design and thorough testing of optimal multiplexes then requires

the purchase, for each locus being genotyped, of an expensive

primer carrying a fluorescent dye label. Despite this cost,

microsatellites remain one of the most popular and useful

molecular markers for studies of population structure and

conservation decision-making. Capillary DNA sequencers auto-

mate microsatellite processing, permitting up to 96 samples to be
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run simultaneously. Scoring of alleles can likewise be automated,

although human verification remains necessary.

Microsatellites often need to be isolated de novo when a

sequenced genome is unavailable. Although a wide variety of

approaches for isolating microsatellites exist [6] they fail frequently

with lepidopteran genomes [7–10]. This inherent difficulty may be

associated with a lack of polymorphism, similarity in flanking

regions of different microsatellite loci, presence of null alleles or

possible associations with mobile elements [7–9,11,12]. However,

there are still a large number of studies detailing the isolation of

microsatellite markers from Lepidoptera [13–18]. Inevitably it

seems, these studies usually show a low number of loci, low levels

of polymorphism, high occurrence of null alleles, or strong

deviations from Hardy-Weinberg equilibrium (HWE) [12–

14,16,19]. Often, it is also the case that the developed markers

prove not to be transferable between geographically distant

populations of the same species. For example, in a recent study

on the marsh fritillary butterfly, Euphydryas aurinia, three out of an

initial 96 loci showed evidence of transferability among geograph-

ically distant populations and sub-species [20]. In studies where

investigations into geographical patterns of population differenti-

ation are the main aim, such markers cannot be used.

The recent advent of next generation sequencing and the

resulting increase in publicly available expressed sequence tag

(EST) data has encouraged quick and easy isolation of microsat-

ellite markers [15,20–22]. With the future cost of DNA sequencing

decreasing at a rate exceeding Moore’s law, the methods used here

are becoming much more accessible to a wider research

community. However, microsatellites associated with expressed

regions of the genome may be under selection, even if they

represent untranslated regions (UTRs) of genes, and hence often

show strong deviations from HWE [15,21]. Fortunately, studies

Table 1. Characteristics of 14 microsatellite loci in Euphydryas aurinia (Lepidoptera: Nymphalidae).

PCR
# Locus Primer sequences (59 to 39)

M13
Label

Repeat
motif

Range
(bp) NA HO HE

%
missing

Average
% null
alleles

GenBank
Acc. no.

1 Aurinia_01 F:CGAGCGTATTTGTCAAAGAAAG HEX (CAT)6 252–270 6 0.396 0.503 8.1% 10.4 JN116271

R:AGCGAATTAGGGTTGTCACATT

2 Aurinia_13 F:AACGTTAACACTAGGGGTCTCA TET (ATT)6 228–237 4 0.332 0.294 0.85% 0.9 JN116273

R:TATGATATAGTGTACGCGGTTTTT

2 Aurinia_16 F:CCCGCTATGATCCATGTTTTA TET (TTA)6 173–204 6 0.343 0.367 0.2% 4.6 JN116275

R:AAATTCATTTGTACTTTCGGTACAT

4 Aurinia_18 F:AAAAGCGCTGAAAGAAGAAAAA TET (TAT)5 189–193 4 0.327 0.384 1.1% 4.0 JN116276

R:CAGTCTCAAAGATTTCGCATAAAA

1 Aurinia_45 F:GGGTGAAATTGCGAATGAGT HEX (GTT)6 193–213 8 0.452 0.566 3.4% 8.9 JN116280

R:TCCCCGCTACAGATGAAATC

3 Aurinia_64 F:CAACCTGTAGCCGGAAAAGA TAM (TAC)8 201–210 4 0.188 0.203 4.0% 3.5 JN116282

R:GCTTTTCTGTTGCCATCGTT

1 Aurinia_70 F:CAACTTCAGTATGATCTCATTGCTTT HEX (GA)10 130–144 8 0.431 0.370 1.5% 1.1 JN116283

R:TCACAATTTGCAGTGGCTCTAT

1 EA26* F:CCGAGATACTCACCTACAAG HEX (TG)5

TA(TG)11

163–180 13 0.705 0.730 5.7% 4.2 AY491806

R:CAGTGTATTTCGGAACACAG (AGCG)4

(TG)3

5 EA51* F:TGACGACAGATGGGTGTTC HEX (TGTA)9

(TGAT)2

129–142 4 0.483 0.622 5.1% 11.9 AY491828

R:TGTAAGCGACTCAGTCTCATTTC

- Aurinia_14 F:TTTGTATGGGGAGAATTTATTGTTT - (AT)8 226–232 4 - - - - JN116274

R:TTTCTTTTAATCACAGATAACCTTTTT

3 Aurinia_23 F:TACAAGCGCTTACCGAAGAAAC TAM (GAT)7 147–162 5 - - - - JN116277

R:TCTGTCTGTTCATCGCTCTCA

2 Aurinia_31 F:CAATTTAGGCGGCAAATTAAGA TET (AAC)5 252–258 2 - - - - JN116278

R:CCCGAGCTAAGCGACTACACTA

2 Aurinia_35 F:CAAGAACATGAATTTAGGTAAGCA TET (TAT)5 122–130 4 - - - - JN116279

R:CATAAGATTATGCCGGTATATAAAGTT

1 Aurinia_62 F:TGTAGGCGACGTTCTTGCTA HEX (AAT)5 240–243 2 - - - - JN116281

R:AATGCATTTTCGCATTCTAGG

Summary statistics based on a survey of 468 individuals from 28 populations. NA, number of observed alleles; HO observed and HE expected heterozygosity per locus. All
Forward primers had M13 tail (TGTAAAACGACGGCCAGT) added to 59 end, as described in text. Loci below the line were lost due to a lack of amplification across all
samples, or because of null alleles, but may prove of use in other populations or closely-related species. PCR reactions 1, 2 and 3 were pooled and analyzed together in
the same sequencer run, as were reactions 4 and 5– see text for description. *Primers were originally published by Petenian et al. [16].
doi:10.1371/journal.pone.0054721.t001
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that have compared EST-derived microsatellites with other

genotyping methods have generally found similar results in studies

of population genetics [15,23,24].

E. aurinia populations have severely declined in both the UK

and continental Europe [25–27]. Therefore, a current need exists

for tools to illuminate population genetic structure throughout this

species, in order to aid the setting of conservation priorities. To

this end, we report the characterization of seven novel microsat-

ellite loci using next-generation 454-pyrosequencing methods and

confirmation of two previously published loci for E. aurinia. These

markers give concordant results for estimates of population

differentiation with amplified fragment length polymorphism

(AFLP) markers on the same samples [28]. Their ability to

amplify across large geographical regions is also demonstrated. We

therefore confirm that these new markers are suitable for use in a

conservation genetics study with the aim of informing priorities

and targets by determining population structure and gene flow

across a fragmented landscape.

Materials and Methods

RNA was extracted from a pool of 64 E. aurinia larvae collected

from 16 sites in south-west UK (under Natural England licence

number 20081071), using TRIzol (Invitrogen). Genomic DNA

contamination was removed by DNase treatment (TURBO

DNase, Ambion) for 30 min at 37uC. RNA was further purified

by using the RNeasy MinElute Clean up Kit (Qiagen) following

the manufacturer’s protocol. Full-length, enriched, cDNAs were

generated from 2 mg of total RNA using the SMART PCR cDNA

synthesis kit (BD Clontech) following the manufacturer’s protocol.

Reverse transcription was performed with the PrimeScript reverse

transcriptase (Takara) for 60 min at 42uC and 90 min at 50uC. In

order to prevent over-representation of the most common

transcripts, the resulting double-stranded cDNAs were normalized

using the Kamchatka crab duplex-specific nuclease method

(Trimmer cDNA normalization kit, Evrogen) [29]. The resulting

normalized cDNA library was sent to the Advanced Genomics

facility at the University of Liverpool (http://www.liv.ac.uk/agf)

for sequencing on the Roche 454 GS-FLX pyrosequencing

platform. The assembly of the obtained reads was achieved using

MIRA v2.9.2663 (http://sourceforge.net/apps/mediawiki/mira-

assembler/index.php?title = Main_Page). The mira assembler was

run using a perl wrapper script (EST2assembly [30]) which

parameterizes and selects the optimal assembly, based on

coverage, redundancy and the proportion of coverage to a

reference transcriptome. The mira command line for the optimal

assembly was: mira-job = denovo, est, accurate,454–fasta-OUT:

rrol = 1:rld = 1:orc = 1:org = 0:ora = 0:ors = 0:otf = 0:otc = 0–GE:not

= 1-CO:asir = 1-LR:mxti = 1-AS:sd = 0:uess = 0:urd = 0:ard = 1-

SKIM:mmhr = 2:mnr = yes 454_SETTINGS-DP:ure = 0-CO:mrpg =

10-CL:pvlc = 0:cpat = 0:mbc = 1:mbcgs = 30:mbcmfg = 30:mbcmeg

= 30:qc = 0-ED:ace = 1-AL:egp = no-ALIGN:bip = 20:bmax =

120:mo = 10:mrs = 80.

The assembled data were queried for $5 perfect repeats of di-,

tri- and tetra-nucleotide repeats using Msatfinder version 2.0.9

[31]. Primers were then designed using Primer3 for 74 contigs

containing microsatellites [32]. Forward primers were designed

with an addition of a M13 tail at the 59 end (M13: 59-

TGTAAAACGACGGCCAGT-39) following the methods of

Schuelke [33]. This allows the use of fewer expensive fluorescently

labelled primers, since only one ‘universal’ fluorescently labelled

M13 primer is required per multiplex. PCR conditions are such

that a small quantity of unlabelled sequence-specific forward

primer with a M13 tail is incorporated first, in partnership with a

sequence-specific reverse primer. Once the forward primer is

depleted, the annealing temperature is lowered so that the

‘universal’ fluorescently labelled M13 forward primer anneals

instead (its annealing temperature is a few degrees lower). The

fluorescent dye is thus incorporated into the PCR product [33]. A

differently labelled M13 primer can be used for each multiplex

and then all multiplexes can be combined when sequencing. We

also synthesized previously published primers of E. aurinia

microsatellite markers [16,34] with the addition of a M13 tail

and tested these on our samples.

E. aurinia (Lepidoptera; Nymphalidae) is a univoltine species,

with gregarious larvae [35]. A single 3rd/4th instar larva was

collected from each of 281 communal webs found in September

2008 and 2009 (Natural England licence numbers 20082745 and

20091722; Countryside Council for Wales licence

OTH:SPCA:09:2008; and Scottish Natural Heritage licence

9154) from a total of 16 sites spanning the butterfly’s mainland

UK range (Figure S1). Each larva collected from south-west UK,

Scotland and Wales was starved for 24 hours to remove plant

material from the digestive tract and then dissected to remove the

Figure 1. Hardy-Weinberg equilibrium (HWE) statistics. ‘Exact test’ statistics for each locus, and for each of the 28 populations included in the
study (each column represents a population with sample size in the top row, with the populations occurring in the same order, left to right, as
numbered in Figure S1 and Table S1), after a sequential Bonferroni correction for multiple tests [43]. Dark shading indicates significant deviation from
HWE (chi-squared test, p,0.05); light grey shading indicates monomorphic loci, or only a single copy of a second allele if present. For loci with less
than five alleles the complete enumeration method was used [51] but for all others a Markov chain algorithm was implemented [52] in GENEPOP v.4.1
[37].
doi:10.1371/journal.pone.0054721.g001
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midgut and potentially any parasitoids, before then being snap

frozen. Following the methods of Martinez-Torres et al. [36] with

slight modification (38 ml of 3 M potassium acetate, pH 5.2, was

used and the samples then incubated at 280uC for 15 mins),

genomic DNA was extracted, diluted to a working concentration

(,15 ng/ml), and stored at 220uC until required. DNA from

samples collected from 12 sites in France and Catalonia

(Figure S1) was extracted from the heads of larvae using DNeasy

Tissue kits (Qiagen) [28]. All 74 designed primer pairs were

initially tested for amplification on four samples from geograph-

ically widespread populations in the UK (site numbers 1, 6, 8 and

11: see Table S1 and Figure S1 for details and geographical

distribution of all populations used in the study). Each 10 ml PCR

mix contained approximately 1.5 ng genomic DNA, 1 ml 10x EX

Buffer (Takara), 2 mM dNTPs, 0.25 U EX Taq HS (Takara), 1 ml

10 mg/ml BSA, 10 pmol fluorescently labelled M13 forward

primer, 10 pmol reverse primer and 2.5 pmol of the sequence

specific forward primer. Using a PTC-200 Thermo Cycler (MJ

Research) the PCR conditions were as follows: 95uC for 5 mins;

followed by 25 cycles of 95uC for 5 s, 60uC for 30 s, 68uC for

1 min; followed by 8 cycles of 95uC for 5 s, 53uC for 30 s, 68uC
for 1 min; and ended with a final extension at 72uC for 30 mins. A

maximum of 2 ml of PCR product was then added to 10 ml HiDi

formamide (Applied Biosystems) and 0.1 ml GeneScan 500 ROX

standard (Applied Biosystems) and run on an ABI 3130xl Genetic

Analyzer (Applied Biosystems). Allele presence and sizes were

assigned using GeneMarker 1.7 (SoftGenetics, LLC).

Potentially polymorphic loci were then tested on a further four

samples from different populations in the UK (site numbers 9, 12,

13 and 14: see Table S1 and Figure S1). For loci that amplified

across all eight samples and appeared polymorphic, we designed

multiplexes using PCR products with non-overlapping size ranges.

Multiplexes using differently labelled M13 ‘universal’ forward

primers were then mixed together and analyzed on an ABI 3100

capillary sequencer (on average 0.5 ml of each multiplex was added

to the ROX and HiDi formamide mix, but this was adapted

according to the intensity of the signal). All microsatellite

sequences were submitted to GenBank under accession numbers

JN116271 and JN116273 to JN116283.

GENEPOP v4.1 was used to assess deviations from HWE [37].

Estimates of null allele frequencies were achieved following the

Expectation Maximization (EM) algorithm of Dempster et al [38]

in the online programme FreeNA [39]. The programme

LOSITAN was then used to identify putative loci under selection

across our samples, using a method of comparing FST values

against expected heterozygosity (HE) to detect outliers [40,41]. As

a subset of samples (N = 128) had been previously genotyped using

AFLP markers [28], the concordance between this previous

analysis and the current study was assessed by comparing the Wst

and Fst matrixes generated by the two studies, respectively, using a

Mantel test with 10,000 bootstrap replicates. Both Wst and Fst

matrixes were computed using Arlequin v3.5 [42].

Results

The 454 run generated 186,835 reads, and a total of 40,865,774

bases, after quality filtering. These were assembled into 22,032

contigs whereby 50% were equal to or larger than a size of 932

bases (N50 size) resulting in an average 3.15-fold coverage.

Primers were designed for 74 microsatellite loci out of the 97 found

in the 454 transcriptome, as some were too close to the edge of the

contig for primer placement. Across an initial sample of four

individuals, 36 of the novel loci did not amplify at all, 24 appeared

monomorphic and 14 were potentially polymorphic. Out of the

eleven previously published loci, only two appeared polymorphic

in our samples. Testing across another four samples resulted in

Figure 2. Deviation from HWE and estimated frequency of null
alleles. The absolute difference between expected and observed
heterozygosity in a population, as a measure of deviation from HWE,
plotted against the estimated frequency of null alleles per marker per
population for all nine loci to be used in future population genetic
studies. Each data point represents one locus in a specific population.
doi:10.1371/journal.pone.0054721.g002

Figure 3. A comparison of microsatellite and AFLP markers on
the same samples. A comparison of pairwise population differenti-
ation (uncorrected Fst and Wst) estimated using the seven novel
microsatellites developed in the current study and AFLP markers
developed in a previous study by Wee [28] on the same set of 11
European populations (solid line). A dashed line is also included to show
where a perfect correspondence between the two would lie.
doi:10.1371/journal.pone.0054721.g003
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discarding of two of the novel primers due to a lack of

amplification across all samples, and possible null alleles (whereby

a mutation in the primer annealing site prevents amplification).

The remaining loci (see Table 1) were developed into multiplex

sets to enable all samples to be genotyped in just two sequencing

mixes. The locus Aurinia_14 was discarded during multiplex

design as it did not successfully amplify with other primer

combinations, or even reliably amplify alone. Loci Aurinia_23B,

Aurinia_31B, Aurinia_62 and Aurinia_35 either did not amplify

well or gave large amounts of missing data, and thus were

excluded from further analyses leaving nine loci for large-scale

genotyping. In many of the sampled populations there was

significant deviation from HWE even after sequential Bonferroni

correction for multiple tests [43] (Figure 1).

These deviations from HWE are likely due to the presence of

null alleles in many cases. Analyses using FreeNA [39] gave

estimated null allele frequencies ranging from 0 to 0.33 per marker

per population, which were highly correlated with the absolute

difference between expected and observed heterozygosities – a

measure of deviation from HWE (Figure 2).

The extent to which deviations from HWE may affect typical

analyses using EST-derived markers is unclear. We were able to

validate our markers using AFLP-derived distances computed for

the same samples in an earlier study, despite the presence of null

alleles [28]. Hence, we show very similar results for estimates of

pairwise population differentiation using only the seven novel

microsatellite loci developed in this study and AFLP markers

developed previously [28] on a subset of the populations analysed

here (Mantel test: r = 0.68, n = 11, p,0.001, Figure 3). Adding the

two previously developed microsatellite loci, EA26 and EA51

(Table 1), further strengthens this relationship (Mantel test:

r = 0.72, p,0.0005). The occurrence of null alleles can be

corrected for when calculating Fst and genetic distances in studies

of population structure [39]. However, this correction does not

explain any significant geographic variation in population

structure, relative to the uncorrected matrix (partial Mantel test

of geographic distance and the corrected Fst matrix, using the un-

corrected matrix as the covariate; p = 0.23), meaning our results

are robust and do not change significantly after correction.

We were also able to demonstrate that all loci fell into the

candidate neutral category after using the programme LOSITAN

[40,41] to identify putative loci under selection across all our

samples (Figure 4). Four pairs of loci showed evidence of linkage

disequilibrium (LD) across all populations (EA26-Aurinia_45,

EA26-Aurinia_01, EA51-EA26, EA51-Aurinia_45) however, fol-

lowing a sequential Bonferroni correction only one remained

marginally significant (EA51-Aurinia_45).

Discussion

This study has successfully isolated and characterized microsat-

ellites for a threatened lepidopteran species using a rapid method

combining data mining for perfect repeats with inexpensive primer

labelling. Schuelke’s [33] M13 primer protocol has particular

advantages for small research groups performing low-throughput

genetic analyses, by reducing costs of fluorescently labelled

primers, particularly useful for initial primer screening, where

primers may be used possibly only once.

Effective and reliable DNA markers are desirable for taxa with

important roles in agriculture, ecology and horticulture, such as

the Lepidoptera. The markers developed in this study originated

from a 454-pyrosequencing run using first-generation chemistry,

and hence likely do not represent the entire breadth of markers to

be found. The low coverage of the transcriptome and the potential

Figure 4. LOSITAN results for all nine loci across all samples. This workbench uses an Fst outlier method to detect potential loci under
selection and therefore unsuitable for use in studies reliant on neutral markers, such as population genetics. Under a stepwise mutation model
(SMM), all loci were found to be candidate neutral markers – located in the white region of the figure. The dark grey region above indicates where
candidate positive selection markers would be found, and the lighter region below indicates where candidate balancing selection markers would be
found. Under an infinite alleles model (IAM) of mutation, the result is the same.
doi:10.1371/journal.pone.0054721.g004
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for assembly errors, especially where there are homopolymer runs,

may explain why so many of the initially designed primers failed to

amplify. There were also time constraints, which highlights the

efficiency of our approach, taking a full time researcher only two

months from receiving primers to analysis.

This study also confirmed the successful use of two established

microsatellite loci for the study species, although they both showed

considerable deviations from HWE across the sampled popula-

tions [16]. Such deviations in HWE, aside from being the result of

null alleles, can be expected in E. aurinia and other Lepidoptera

with similar life histories, for several biologically plausible reasons.

Butterflies in the subfamily Melitaeinae, to which the genus

Euphydryas belongs, typically suffer frequent population extinctions

and their persistence in a landscape can depend entirely on

metapopulation dynamics [44]. Although population structure is

often discrete [45] and most individuals travel very short distances

in their lives, occasional longer distance dispersal events occur

[46,47]. In E. aurinia, mean clutch size is several hundred eggs

[48], such that each female is unlikely to lay more than two

clutches in her lifetime. Effective population size is reduced by the

correlated survival of siblings that results from this large clutch size

and by extreme population fluctuations [49]. Also affecting HWE

expectations are the high levels of inbreeding found in small

subpopulations within metapopulations [50], which is an unavoid-

able result of habitat fragmentation and stochastic patch dynamics.

Our final analysis using LOSITAN [40,41] confirms that all loci

are putatively neutral, and so deviations are likely to be due to

actual population structure and dynamics, but also, significantly,

due to the presence of null alleles across the markers themselves.

Studies using these markers to compute Hardy-Weinberg equilib-

rium should make corrections for the presence of null alleles,

although Fst-based measures of population differentiation appear

relatively robust (see also Mikheyev et al [15]).

The markers developed here from a 454 transcriptome fulfil a

large number of desired criteria for developing ‘robust’ microsat-

ellite markers for E. aurinia [20]. This includes perfect repeat motifs

(neither compound microsatellites nor with any interruptions),

being PCR ‘multiplexable’, and being transferable between

geographically distant populations [20]. The one caveat, or

unfulfilled criterion, is that some loci in some populations may

have substantial numbers of null alleles. Sinama et al [20] recently

developed microsatellite markers for E. aurinia using a combination

of a biotin-enrichment protocol and next generation pyrosequenc-

ing on genomic DNA, resulting in three markers without the

presence of null alleles. These three markers also showed

transferability between populations geographically further apart

than those used in this current study, and between sub-species of

E. aurinia [20]. Although null alleles can overestimate the genetic

distance in significantly differentiated populations [39], the extent

to which they affect the measurement of population differentiation

in E. aurinia is unknown a priori. Furthermore, there is no guarantee

that some population not sampled during marker development will

not have null alleles. Aware of this problem in our markers, we

validated their use for estimating genetic distances between

populations with data from AFLP markers, with and without

correction for the presence of null alleles [39]. Sinama et al [20]

did not have AFLP markers as a comparison. However that study

rejected four microsatellite markers because of deviations from

HWE in only one out of the three populations tested. Such

markers might actually prove usable if they could be validated.

Approaches such as those used in both this study and by Sinama

et al [20], may both be useful for efficient and cost effective

development of robust markers for any endangered or non-model

lepidopteran species, and should be the methods of choice for

future studies. Marker validation through an alternative technique

remains a plus.

Supporting Information

Figure S1 Map showing location of all 28 populations
sampled in the present study. Populations 18 to 28 are those

also included in a previous study using AFLP markers [28].

(TIF)

Table S1 Sites across the UK and Catalonia region of
Europe from which E. aurinia was sampled.
(DOCX)
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