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Museums and herbaria represent vast repositories of biological

material. Until recently, working with these collections has been

difficult, due to the poor condition of historical DNA. However,

recent advances in next-generation sequencing technology,

and subsequent development of techniques for preparing and

sequencing historical DNA, have recently made working with

collection specimens an attractive option. Here we describe

the unique technical challenges of working with collection

specimens, and innovative molecular methods developed to

tackle them. We also highlight possible applications of

collection specimens, for taxonomy, ecology and evolution.

The application of next-generation sequencing methods to

museum and herbaria collections is still in its infancy. However,

by giving researchers access to billions of specimens across

time and space, it holds considerable promise for generating

future discoveries across many fields.
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Introduction
The molecular revolution has profoundly impacted the

biological sciences. In the past decades biobanks and

biorepositories have been developed to store tissue or

DNA samples appropriate for genetic and genomic re-

search [1], with storage in liquid nitrogen being the ‘gold

standard’. These biobanks were initiated to store human

and model organism accessions, but increasingly their use

has been broadened to include a wider range of taxa, and

efforts are underway to join them in a virtual network, the

Global Genome Biodiversity Network, GGBN [2]. At the
www.sciencedirect.com 
time of writing, the GGBN had 49 members around the

world storing just over 250,000 tissue samples of only

32,000 species (www.ggbn.org). While this is impressive,

these numbers pale in comparison to the estimated 3 bil-

lion specimens from 2 million species stored by the

world’s museums and herbaria [3]. This includes samples

of all the nearly 2 million described species and all their

synonyms, as well as samples of the about 20,000 species

newly described each year [4,5]. Assuming an average

genome size of 0.5 Gb, these specimens contain zetta-

bases (1021) of sequence data, on the scale of total

available hard drive storage capacity [6]. These museum

and herbarium (together termed collections below) sam-

ples also span an incredible geographical range across all

biomes in all continents and a temporal range extending

back prior to the industrial revolution. In addition to their

phenotype, what if we could sample the genotype of

these specimens?

Increasingly we can do this, with careful extra work.

Standard museum and herbarium specimens are often

stored at or near room temperature, either air dried or in

preservative liquids such as ethanol and formalin. Earlier

experimental protocols employing Sanger sequencing

technology established that genetic sequences from mu-

seum and herbarium specimens were possible to obtain,

but success was patchy and limited to genes found in high

copy number, such as those from cellular organelles [7].

Similar results were obtained from ancient DNA where

genetic sequences were recovered from environmental

samples [8]. These early successes highlighted the enor-

mous potential of old DNA samples to answer compelling

biological questions, especially about the evolutionary

history of extinct species and the nature and trajectory

of biological change through time [9–12].

In recent years high throughput sequencing (HTS) tech-

nology has greatly expanded and synergised the genetic

and genomic potential of biological collections. This is

largely because degraded DNA in collection samples is a

much more tractable starting point for HTS than previous

sequencing technologies, producing greater data yields

and the assembly of sequences from a greater variety of

genes [13,14��]. The power of new sequencing technolo-

gy to unlock the genetic and genomic potential of muse-

um and herbarium specimens is so great that it has blurred

the distinction between biobank and collection, especial-

ly when DNA sequence is the target data. Obviously,

there are cases where high-quality biobank tissues are
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essential, such as for studies of RNA and complete

genome assemblies. Conversely, molecular studies linked

to biodiversity benefit more from the taxonomic breadth

of biological collections than from a limited number of

high quality samples in biobanks. Putting special applica-

tions aside, this review focuses on the landscape of

opportunities natural history collections offer if looked

upon as vast storehouses of genomic DNA, and on im-

portant sequencing strategies that open up this rapidly

developing field.

Challenges posed by museum specimens
Museum and herbarium specimens pose a number of

unique challenges, which require the development of

novel molecular and analytic approaches to dealing with

them. Below we outline some considerations and pro-

posed solutions.

Damage to the specimen

By definition, museum specimens are irreplaceable, but

DNA extraction often results in damage to the specimens.

Fortunately, a number of approaches suitable for inverte-

brates and vertebrates minimize damage to the specimen,

while producing adequate DNA yields [15�,16–18].

Fragmentation

The DNA of museum and herbarium specimens will

almost certainly be fragmented by a number of processes

that begin after death such as DNA hydrolysis through

nucleases in the body itself, chemicals used as killing and/

or fixing agents, preservatives such as ethanol and forma-

lin [19], and chemicals used to protect against pest attack

in the collection such as dichlorvos [20]. Fragmentation is

generally not an obstacle for HTS methods because they

require short lengths of DNA template. However, ex-

tremely short fragments may not carry enough informa-

tion to be useful, and may need to be filtered out either

bioinformatically, or ideally during library construction.

Contamination

Many museum samples contain not just endogenous

DNA, but also DNA from bacterial, fungal and other

contaminants that have grown in the sample post-mor-

tem. In addition, there is possible contamination from

other material that was stored together in the same tray, or

vial, or that was brought into contact during specimen

handling. Contamination is a major problem, because

amplification by polymerase chain reaction (PCR) can

bias towards longer, more intact fragments resulting in the

overrepresentation of non-endogenous DNA. At best, this

consumes sequencing capacity, which can increase the

expense of sequencing by over an order of magnitude. At

worst, contamination can yield erroneous data. As a result,

when working with museum specimens, it is worth fol-

lowing best practices developed for the study of human

specimens, such as decontamination with UV-light and
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physical separation between areas used for DNA extrac-

tion and amplification [21].

DNA degradation

DNA breaks down over time, which causes a range of

miscoding lesions and can lead to erroneous sequence

reads. Depurination, especially in guanosine residues,

leads to strand breaks, and deamination of cytosine resi-

dues into uracil also occurs [22,23]. Both depurination and

deamination can lead to GC!AT sequencing errors. In

addition, interstrand cross-linking may occur post-mor-

tem, particularly in formalin-fixed specimens, preventing

polymerase bypass, and blocking DNA denaturation [24].

Sequencing strategies
The sequencing strategies are outlined in Figure 1 focus

on preparing sequencing libraries from the DNA extract,

and, optionally, enriching them for endogenous DNA and

evenly targeted sequences.

Direct sequencing of museum samples

While it is certainly possible to sequence museum sam-

ples directly, this may not be cost-effective for large

numbers of samples, or for organisms with large genomes.

In addition, with the exception of the strategy outlined in

Figure 1b0, direct sequencing does not eliminate contam-

inant DNA, which may substantially waste sequencing

capacity. However, since unbiased genome representa-

tion is often lost during enrichment, direct sequencing

may be the best approach for low-input samples. PCR-

free libraries are a solution for direct sequencing, which

greatly minimize the risk of contamination [25��]. Alter-

natively, extremely low-coverage whole genome shotgun

sequencing (‘genome skimming’) permits the sequencing

of highly abundant DNA (e.g. ribosomal genes, mito-

chondrial and chloroplast genomes) for a large number of

samples, sufficient for many phylogenetic questions

[15�,26].

Targeted reduced genome representation

These methods involve the selective capture of genomic

regions prior to NGS [27]. Sequence capture methods are

technically demanding, require construction of libraries

prior to hybridization, and do not scale well [28�]. How-

ever, they are cost-effective when dealing with large

numbers of samples.

Hybrid enrichment

This method involves hybridizing genomic DNA to DNA

probes or ‘baits’ and then washing away the non-target

DNA (e.g. [29–31]). The resulting enriched DNA can be

sequenced using various HTS platforms. Bait design

requires some knowledge of the target genome, so may

require a transcriptome or genome sequence within or

adjacent to the target group. The standard probe designs

usually work for closely related species with 10–15%

divergence, but baits can be designed around targets with
www.sciencedirect.com
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Processing of museum specimen DNA generally requires multiple steps. (a) The initial pool of DNA contains fragments from the target organism

(black), contaminants (red), and sites where the template has undergone sequence-altering damage (red circles). Target sequences of particular

interest for the investigator are highlighted in yellow. The goal is to maximize the yield of endogenous DNA in the sequencing libraries, and

possibly select a subset of the genome for targeted sequencing. (b) A common first step is to generate a sequencing library by attaching synthetic

adaptors to both ends of the DNA fragment. (b0) An ingenious protocol by Gansauge and Meyer [50��] takes advantage of high rates of cytosine

deamination in single-stranded overhangs in ancient DNA to enrich for endogenous material. Libraries prepared in steps (b) or (b0) can be used for

whole-genome sequencing, though without enrichment for endogenous DNA, it is likely that many reads, potentially the overwhelming majority, will

be wasted on contaminant sequences. Alternatively, molecular inversion probes can capture target sequence, while simultaneously making

constructs that can be used directly for sequencing (c). For many applications, whole genome sequencing is not cost-effective, and a variety of

enrichment approaches exist, which capture just a subset of the target genome (d).
different phylogenetic scope (e.g. family versus order).

Because they work on fragmented DNA, these standard

hybrid probes will work with museum specimens, but the

success of hybrid capture is greatest with more recently

collected material [32].

Alternatively, ultraconserved elements (UCE) and other

very slowly evolving regions could be used to anchor

DNA fragments to hybrid probes (e.g. [29,33]). These

techniques rely on the identification of short 50–200 bps

genomic regions that are highly conserved and act as

anchors for genetic markers. Variable sequence is recov-

ered flanking the anchors that can be used in phylogenetic

analysis. An additional benefit is that at least UCEs

appear to have little overlap with known paralogous

genes. In the context of museum specimens, the more

degraded the DNA, the less flanking sequence will be

captured; as variability tends to increase with distance to

conserved areas, old museum specimens might still be

useful to capture variation between distantly related

species, but not for closely related species. Depending

on the application, using anchors for degraded DNA may

be problematic, since not enough variably flanking se-

quence may exist, though workable data may still be

obtained [34�,35].
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Molecular inversion probes

Molecular inversion probes (MIPs) are single-stranded

DNA molecules containing on their ends sequences

complementary to two conserved regions flanking the

target of up to several hundred base pairs. Following

hybridization to the target, gap-filling and ligation result

in circularized DNA molecules containing the target

sequence with adaptors and barcodes ready for down-

stream analyses [36]. Long used for model systems, they

have a number of advantages, such as low input template

amount — in species with genomes 1 Gb or smaller, 20–
50 ng of genomic DNA should be sufficient [28�]. MIPs

do not require the development of genomic libraries, are

relatively inexpensive and software for the design and

analysis of MIP markers is available. Markers can be

designed to have a broad phylogenetic target. Because

the technique targets short DNA fragments, the tech-

nique should be amenable for degraded museum materi-

al, though the synthesis of the probes themselves is

expensive.

Random reduced genome representation

Restriction site associated DNA (RAD-seq) analysis

[37,38] involves sequencing regions of the genome asso-

ciated with conserved cutting sites of restriction enzymes.
Current Opinion in Insect Science 2016, 18:83–88
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This technique is low-cost and allows many samples to be

processed simultaneously. It was primarily developed for

population genetics, but RAD-seq data are also used in

low-level phylogenetics, with the completeness and use-

fulness of the data matrix decreasing with evolutionary

distance. In principle, one can apply RAD-seq to museum

samples without modification, but given the already

fragmented nature of the DNA, many of the resulting

fragments are too short to provide meaningful information

[15�]. In addition, many libraries have low complexity and

consist of many PCR duplicates [39]. As a result, a

number of techniques have been developed, combining

the benefits of hybridization with RAD-seq. One such

technique is RAPTURE (RAD Capture; [40]), which

involves pooling of RAD-seq data, followed by joint

capture to increase specificity and reduce capacity needed

for sequencing, that is, permitting the sequencing of more

samples in a run. An alternative called hyRAD (hybrid-

ization RAD; [41��]) uses RAD-seq fragments of fresh

samples as cheap probes to capture degraded fragments

from museum specimens. These techniques show con-

siderable promise for non-model systems, since they do

not require extensive genomic information prior to anal-

ysis.

What can we achieve by sequencing museum
specimens?
Perhaps the most obvious application of museum and

herbarium specimens is in keeping with the traditional

role of collections, namely for taxonomic research. Mo-

lecular markers have already been used to link type

specimens to specific members of morphologically indis-

tinguishable species groups [42]. Likewise, molecular

analysis of collection specimens can be used for species

delimitation and phylogenetics [15�,43]. In addition,

museums and herbaria contain many unidentified speci-

mens, many of which represent new species [44]; molec-

ular analysis can speed up the species discovery process.

Just as powerfully, collection specimens can be used to

study ecological and evolutionary processes. For example,

museum specimens have been used to reconstruct the

history of biological invasions [45–47]. They have also

been useful in examining changes in effective population

size [7], and connectivity between populations [48]. Fi-

nally, by providing a window into the past, museum

specimens can permit comparisons between time points,

permitting direct measurement of allelic changes across

time, and thus direct measures of selection [25��,49].

Driven by advances in next-generation sequencing tech-

nology, the study of museum and herbarium specimens is

in its infancy. With time, we are sure that the few

applications outlined above will prove to be just a small

sampling of what is possible. There remain many avenues

for future research, both in the perfection and develop-

ment of molecular tools, and in the analysis of the
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downstream data. Hopefully, the growing appreciation

of the genetic value of collection specimens and the

discoveries made through their collections will not only

spur on research, but also result in the allocation of

resources to the collections themselves, which provide

ongoing stewardship and management of a wealth of

samples that cannot be recreated.
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